Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 74
Filter
1.
Vaccine ; 41(27): 4009-4018, 2023 Jun 19.
Article in English | MEDLINE | ID: covidwho-20243650

ABSTRACT

BACKGROUND: Maternal pertussis immunization using Tdap vaccine is recommended in many countries to protect newborns from severe post-natal infection. Immunological changes during pregnancy may influence the response to vaccines. The quality of IgG and memory B cell responses to Tdap immunization in pregnant women has not yet been described. METHODS: The impact of pregnancy on the response to Tdap vaccination was assessed by comparing humoral immune responses in 42 pregnant and 39 non-pregnant women. The levels of serum pertussis antigens and tetanus toxoid-specific IgG, IgG subclasses, IgG Fc-mediated effector functions, as well as memory B cell frequencies were assessed before and at several time points after vaccination. RESULTS: Tdap immunization induced similar levels of pertussis and tetanus-specific IgG and IgG subclasses in pregnant and non-pregnant women. Pregnant women produced IgG promoting complement deposition, and neutrophils and macrophages phagocytosis at levels comparable to non-pregnant women. They were also able to expand pertussis and tetanus-specific memory B cells at similar frequencies as non-pregnant women, suggesting equivalent "boostability". Higher levels of vaccine-specific IgG, IgG subclasses, and IgG Fc-mediated effector functions were detected in cord blood as compared to maternal blood, indicating efficient transport across the placenta. CONCLUSIONS: This study demonstrates that pregnancy does not affect the quality of effector IgG and memory B cell responses to Tdap immunization and that polyfunctional IgG are efficiently transferred across the placenta. REGISTRY'S URL AND THE TRIAL'S REGISTRATION NUMBER: ClinicalTrials.Gov (NCT03519373).


Subject(s)
Diphtheria-Tetanus-acellular Pertussis Vaccines , Tetanus , Whooping Cough , Female , Humans , Infant, Newborn , Pregnancy , Antibodies, Bacterial , Immunoglobulin G , Memory B Cells , Tetanus/prevention & control , Vaccination , Whooping Cough/prevention & control
2.
Front Immunol ; 14: 1136308, 2023.
Article in English | MEDLINE | ID: covidwho-2322722

ABSTRACT

Introduction: Inborn errors of immunity (IEI) are a heterogeneous group of diseases caused by intrinsic defects of the immune system. Estimating the immune competence of immunocompromised patients for an infection risk assessment or after SARS-CoV-2 vaccination constituted a challenge. Methods: The aim of this study was to determine the humoral responses of patients with IEI through a comprehensive analysis of specific receptor-binding domain-positive (RBD+) IgG+ memory B cells (MBCs) by flow cytometry, together with routine S-specific IgG antibodies and QuantiFERON SARS-CoV-2 (T-cell response), before the vaccine and 3 weeks after a second dose. Results and discussion: We first analyzed the percentage of specific RBD+ IgG+ MBCs in healthy healthcare workers. Within the control group, there was an increase in the percentage of specific IgG+ RBD+ MBCs 21 days after the second dose, which was consistent with S-specific IgG antibodies.Thirty-one patients with IEI were included for the pre- and post-vaccination study; IgG+ RBD+ MBCs were not evaluated in 6 patients due to an absence of B cells in peripheral blood. We detected various patterns among the patients with IEI with circulating B cells (25, 81%): an adequate humoral response was observed in 12/25, consider by the detection of positive S-specific IgG antibodies and the presence of specific IgG+ RBD+ MBCs, presenting a positive T-cell response; in 4/25, very low S-specific IgG antibody counts correlated with undetectable events in the IgG+ RBD+ MBC compartment but with positive cellular response. Despite the presence of S-specific IgG antibodies, we were unable to detect a relevant percentage of IgG+ RBD+ MBCs in 5/25; however, all presented positive T-cell response. Lastly, we observed a profound failure of B and T-cell response in 3 (10%) patients with IEI, with no assessment of S-specific IgG antibodies, IgG+ RBD+ MBCs, and negative cellular response. The identification of specific IgG+ RBD+ MBCs by flow cytometry provides information on different humoral immune response outcomes in patients with IEI and aids the assessment of immune competence status after SARS-CoV-2 mRNA vaccine (BNT162b2), together with S-specific IgG antibodies and T-cell responses.


Subject(s)
COVID-19 , Memory B Cells , Humans , COVID-19 Vaccines , BNT162 Vaccine , Flow Cytometry , COVID-19/prevention & control , SARS-CoV-2 , Vaccination , Health Personnel , Immunoglobulin G
3.
Viral Immunol ; 36(5): 343-350, 2023 Jun.
Article in English | MEDLINE | ID: covidwho-2314395

ABSTRACT

Coronavirus disease 2019 (COVID-19), caused by the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), rapidly resulted in a pandemic constituting a global health emergency. As an indicator of long-term immune protection from reinfection with the SARS-CoV-2 virus, the presence of memory B cells (MBCs) should be evaluated. Since the beginning of COVID-19 pandemic, several variants of concerns have been detected, including Alpha (B.1.1.7), Beta (B.1.351), Gamma (P.1/B.1.1.28.1), Delta (B.1.617.2), and Omicron (BA.1) variants with several different mutations, causing serious concern regarding the increased frequency of reinfection, and limiting the effectiveness of the vaccine response. At this regard, we investigated SARS-CoV-2-specific cellular immune responses in four different cohorts: COVID-19, COVID-19 infected and vaccinated, vaccinated, and negative subjects. We found that MBC response to SARS-CoV-2 at more than 11 months postinfection was higher in the peripheral blood of all COVID-19 infected and vaccinated subjects respect to all the other groups. Moreover, to better characterize the differences of SARS-CoV-2 variants immune responses, we genotyped SARS-CoV-2-positive samples from the patients' cohort. We found a higher level of immunoglobulin M+ (IgM+) and IgG+ spike MBCs in SARS-CoV-2-positive patients (5-8 months after symptoms onset) infected with the SARS-CoV-2-Delta variant compared with the SARS-CoV-2-Omicron variant implying a higher immune memory response. Our findings showed that MBCs persist more than 11 months after primary infection indicating a different involvement of the immune system according to the different SARS-CoV-2 variant that infected the host.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , Memory B Cells , Pandemics , Reinfection , Spike Glycoprotein, Coronavirus/genetics , Antibodies, Viral
4.
Front Immunol ; 13: 1017863, 2022.
Article in English | MEDLINE | ID: covidwho-2314541

ABSTRACT

Vaccination against SARS-CoV-2 using mRNA-based vaccines has been highly recommended for fragile subjects, including myelofibrosis patients (MF). Available data on the immune responsiveness of MF patients to mRNA SARS-CoV-2 vaccination, and the impact of the therapy with the JAK inhibitor ruxolitinib, are still fragmented. Here, we profile the spike-specific IgG and memory B-cell response in MF patients, treated or not with ruxolitinib, after the second and the third dose of SARS-CoV-2 BNT162b2 (BioNTech) and mRNA-1273 (Moderna) vaccines. Plasma and peripheral blood mononuclear cells samples were collected before vaccination, post the second and the third doses and tested for spike-specific antibodies, ACE2/RBD antibody inhibition binding activity and spike-specific B cells. The third vaccine dose significantly increased the spike-specific IgG titers in both ruxolitinib-treated and untreated patients, and strongly enhanced the percentage of subjects with antibodies capable of in vitro blocking ACE2/RBD interaction, from 50% up to 80%. While a very low frequency of spike-specific B cells was measured in blood 7 days after the second vaccination dose, a strong and significant increase was elicited by the third dose administration, generating a B cell response similar to the one detected in healthy controls. Despite the overall positive impact of the third dose in MF patients, two patients that were under active concomitant immunosuppressive treatment at the time of vaccination, and a patient that received lymphodepleting therapies in the past, remained low responders. The third mRNA vaccine dose strongly increases the SARS-CoV-2 specific humoral and B cell responses in MF patients, promoting a reactivation of the immune response similar to the one observed in healthy controls.


Subject(s)
COVID-19 , Janus Kinase Inhibitors , Primary Myelofibrosis , Spike Glycoprotein, Coronavirus/immunology , Viral Vaccines , Angiotensin-Converting Enzyme 2 , Antibodies, Viral , BNT162 Vaccine , COVID-19/prevention & control , COVID-19 Vaccines , Humans , Immunoglobulin G , Leukocytes, Mononuclear , Memory B Cells , Nitriles , Pyrazoles , Pyrimidines , RNA, Messenger , SARS-CoV-2 , Vaccines, Synthetic , mRNA Vaccines
5.
Nat Immunol ; 24(6): 955-965, 2023 06.
Article in English | MEDLINE | ID: covidwho-2306685

ABSTRACT

The B cell response to different pathogens uses tailored effector mechanisms and results in functionally specialized memory B (Bm) cell subsets, including CD21+ resting, CD21-CD27+ activated and CD21-CD27- Bm cells. The interrelatedness between these Bm cell subsets remains unknown. Here we showed that single severe acute respiratory syndrome coronavirus 2-specific Bm cell clones showed plasticity upon antigen rechallenge in previously exposed individuals. CD21- Bm cells were the predominant subsets during acute infection and early after severe acute respiratory syndrome coronavirus 2-specific immunization. At months 6 and 12 post-infection, CD21+ resting Bm cells were the major Bm cell subset in the circulation and were also detected in peripheral lymphoid organs, where they carried tissue residency markers. Tracking of individual B cell clones by B cell receptor sequencing revealed that previously fated Bm cell clones could redifferentiate upon antigen rechallenge into other Bm cell subsets, including CD21-CD27- Bm cells, demonstrating that single Bm cell clones can adopt functionally different trajectories.


Subject(s)
B-Lymphocyte Subsets , COVID-19 , Humans , SARS-CoV-2 , Memory B Cells , B-Lymphocytes
6.
Cell Rep Med ; 2(4): 100228, 2021 04 20.
Article in English | MEDLINE | ID: covidwho-2247733

ABSTRACT

Considerable concerns relating to the duration of protective immunity against severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) exist, with evidence of antibody titers declining rapidly after infection and reports of reinfection. Here, we monitor the antibody responses against SARS-CoV-2 receptor-binding domain (RBD) for up to 6 months after infection. While antibody titers are maintained, ∼13% of the cohort's neutralizing responses return to background. However, encouragingly, in a selected subset of 13 participants, 12 have detectable RBD-specific memory B cells and these generally are increasing out to 6 months. Furthermore, we are able to generate monoclonal antibodies with SARS-CoV-2 neutralizing capacity from these memory B cells. Overall, our study suggests that the loss of neutralizing antibodies in plasma may be countered by the maintenance of neutralizing capacity in the memory B cell repertoire.


Subject(s)
Antibodies, Neutralizing/blood , COVID-19/pathology , Memory B Cells/metabolism , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/chemistry , Adult , Aged , Aged, 80 and over , Antibodies, Neutralizing/immunology , Asymptomatic Diseases , COVID-19/immunology , COVID-19/virology , Female , Humans , Limit of Detection , Male , Middle Aged , Neutralization Tests , Protein Domains/immunology , SARS-CoV-2/isolation & purification , Severity of Illness Index , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/metabolism , Time Factors , Young Adult
8.
J Clin Immunol ; 43(5): 869-881, 2023 Jul.
Article in English | MEDLINE | ID: covidwho-2282518

ABSTRACT

PURPOSE: Humoral and cellular immune responses were described after COVID-19 vaccination in patients with common variable immunodeficiency disorder (CVID). This study aimed to investigate SARS-CoV-2-specific antibody quality and memory function of B cell immunity as well as T cell responses after COVID-19 vaccination in seroresponding and non-responding CVID patients. METHODS: We evaluated antibody avidity and applied a memory B cell ELSPOT assay for functional B cell recall memory response to SARS-CoV-2 after COVID-19 vaccination in CVID seroresponders. We comparatively analyzed SARS-CoV-2 spike reactive polyfunctional T cell response and reactive peripheral follicular T helper cells (pTFH) by flow cytometry in seroresponding and non-seroresponding CVID patients. All CVID patients had previously failed to mount a humoral response to pneumococcal conjugate vaccine. RESULTS: SARS-CoV-2 spike antibody avidity of seroresponding CVID patients was significantly lower than in healthy controls. Only 30% of seroresponding CVID patients showed a minimal memory B cell recall response in ELISPOT assay. One hundred percent of CVID seroresponders and 83% of non-seroresponders had a detectable polyfunctional T cell response. Induction of antigen-specific CD4+CD154+CD137+CXCR5+ pTFH cells by the COVID-19 vaccine was higher in CVID seroresponder than in non-seroresponder. Levels of pTFH did not correlate with antibody response or avidity. CONCLUSION: Reduced avidity and significantly impaired recall memory formation after COVID-19 vaccination in seroresponding CVID patients stress the importance of a more differentiated analysis of humoral immune response in CVID patients. Our observations challenge the clinical implications that follow the binary categorization into seroresponder and non-seroresponder.


Subject(s)
COVID-19 , Common Variable Immunodeficiency , Humans , Memory B Cells , COVID-19 Vaccines , Antibody Affinity , Common Variable Immunodeficiency/therapy , SARS-CoV-2 , Vaccination , Antibodies, Viral
9.
J Immunol Methods ; 515: 113457, 2023 04.
Article in English | MEDLINE | ID: covidwho-2252289

ABSTRACT

BACKGROUND: The generation of antigen-specific memory B cells is crucial to the long-term effectiveness of vaccines. When the protective antibodies circulating in the blood wane, memory B cells (MBC) can be rapidly reactivated and differentiated into antibody-secreting cells during a new infection. Such MBC responses are considered to be key in providing long-term protection after infection or vaccination. Here, we describe the optimization and qualification of a FluoroSpot assay to measure MBCs directed against the SARS-CoV-2 spike protein in the peripheral blood, for use in COVID-19 vaccine trials. METHODS: We developed a FluoroSpot assay enabling simultaneous enumeration of B cells secreting IgA or IgG spike-specific antibodies after polyclonal stimulation of peripheral blood mononuclear cells (PBMCs) with interleukin-2 and the toll-like receptor agonist R848 for 5 days. The antigen coating was optimized using a capture antibody directed against the spike subunit-2 glycoprotein of SARS-CoV-2 to immobilize recombinant trimeric spike protein onto the membrane. RESULTS: Compared to a direct spike protein coating, the addition of a capture antibody increased the number and the quality of detected spots for both spike-specific IgA and IgG secreting cells in PBMCs from COVID-19 convalescents. The qualification showed good sensitivity of the dual-color IgA-IgG FluoroSpot assay, with lower limits of quantitation of 18 background-subtracted (BS) antibody-secreting cells (ASCs)/well for spike-specific IgA and IgG responses. Linearity was demonstrated at values ranging from 18 to 73 and from 18 to 607 BS ASCs/well for spike-specific IgA and IgG, respectively, as was precision, with intermediate precision (percentage geometric coefficients of variation) of 12% and 26% for the proportion of spike-specific IgA and IgG MBCs (ratio specific/total IgA or Ig). The assay was specific, since no spike-specific MBCs were detected in PBMCs from pre-pandemic samples; the results were below the limit of detection of 17 BS ASCs/well. CONCLUSIONS: These results show that the dual-color IgA-IgG FluoroSpot provides a sensitive, specific, linear, and precise tool to detect spike-specific MBC responses. This MBC FluoroSpot assay is a method of choice for monitoring spike-specific IgA and IgG MBC responses induced by COVID-19 candidate vaccines in clinical trials.


Subject(s)
COVID-19 Vaccines , COVID-19 , Humans , Spike Glycoprotein, Coronavirus , Memory B Cells , SARS-CoV-2 , Leukocytes, Mononuclear , COVID-19/prevention & control , Excipients , Immunoglobulin A , Immunoglobulin G , Antibodies, Viral
10.
Nature ; 617(7961): 592-598, 2023 May.
Article in English | MEDLINE | ID: covidwho-2249288

ABSTRACT

The primary two-dose SARS-CoV-2 mRNA vaccine series are strongly immunogenic in humans, but the emergence of highly infectious variants necessitated additional doses and the development of vaccines aimed at the new variants1-4. SARS-CoV-2 booster immunizations in humans primarily recruit pre-existing memory B cells5-9. However, it remains unclear whether the additional doses induce germinal centre reactions whereby re-engaged B cells can further mature, and whether variant-derived vaccines can elicit responses to variant-specific epitopes. Here we show that boosting with an mRNA vaccine against the original monovalent SARS-CoV-2 mRNA vaccine or the bivalent B.1.351 and B.1.617.2 (Beta/Delta) mRNA vaccine induced robust spike-specific germinal centre B cell responses in humans. The germinal centre response persisted for at least eight weeks, leading to significantly more mutated antigen-specific bone marrow plasma cell and memory B cell compartments. Spike-binding monoclonal antibodies derived from memory B cells isolated from individuals boosted with either the original SARS-CoV-2 spike protein, bivalent Beta/Delta vaccine or a monovalent Omicron BA.1-based vaccine predominantly recognized the original SARS-CoV-2 spike protein. Nonetheless, using a more targeted sorting approach, we isolated monoclonal antibodies that recognized the BA.1 spike protein but not the original SARS-CoV-2 spike protein from individuals who received the mRNA-1273.529 booster; these antibodies were less mutated and recognized novel epitopes within the spike protein, suggesting that they originated from naive B cells. Thus, SARS-CoV-2 booster immunizations in humans induce robust germinal centre B cell responses and can generate de novo B cell responses targeting variant-specific epitopes.


Subject(s)
B-Lymphocytes , COVID-19 Vaccines , COVID-19 , Germinal Center , Immunization, Secondary , Humans , Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/immunology , COVID-19/prevention & control , COVID-19/virology , COVID-19 Vaccines/administration & dosage , COVID-19 Vaccines/immunology , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , B-Lymphocytes/cytology , B-Lymphocytes/immunology , Germinal Center/cytology , Germinal Center/immunology , Plasma Cells/cytology , Plasma Cells/immunology , Memory B Cells/cytology , Memory B Cells/immunology , Epitopes, B-Lymphocyte/genetics , Epitopes, B-Lymphocyte/immunology
11.
Front Immunol ; 14: 1123724, 2023.
Article in English | MEDLINE | ID: covidwho-2269509

ABSTRACT

The formation of a robust long-term antigen (Ag)-specific memory, both humoral and cell-mediated, is created following severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection or vaccination. Here, by using polychromatic flow cytometry and complex data analyses, we deeply investigated the magnitude, phenotype, and functionality of SARS-CoV-2-specific immune memory in two groups of healthy subjects after heterologous vaccination compared to a group of subjects who recovered from SARS-CoV-2 infection. We find that coronavirus disease 2019 (COVID-19) recovered patients show different long-term immunological profiles compared to those of donors who had been vaccinated with three doses. Vaccinated individuals display a skewed T helper (Th)1 Ag-specific T cell polarization and a higher percentage of Ag-specific and activated memory B cells expressing immunoglobulin (Ig)G compared to those of patients who recovered from severe COVID-19. Different polyfunctional properties characterize the two groups: recovered individuals show higher percentages of CD4+ T cells producing one or two cytokines simultaneously, while the vaccinated are distinguished by highly polyfunctional populations able to release four molecules, namely, CD107a, interferon (IFN)-γ, tumor necrosis factor (TNF), and interleukin (IL)-2. These data suggest that functional and phenotypic properties of SARS-CoV-2 adaptive immunity differ in recovered COVID-19 individuals and vaccinated ones.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , COVID-19/prevention & control , B-Lymphocytes , Memory B Cells , Interferons , Immunoglobulin G
12.
Front Immunol ; 13: 889876, 2022.
Article in English | MEDLINE | ID: covidwho-2198816

ABSTRACT

IgM memory B cells, are a peculiar subset of memory B cells, which probably originates in the spleen and outside germinal centers and provide a rapid line of defence against mucosal infections. Their role in counteracting COVID-19 is still elusive but, recent evidence, mainly boosted by studies on spleen function/involvement in COVID-19, seems to support the notion that this subset of memory B cells could exert a protective role against this virus, along with other coronaviruses, particularly in the acute setting of the infection, as outlined by worst clinical outcomes observed in unvaccinated patients with impaired IgM B memory response and spleen function. Herein we critically summarise the current landscape of studies on IgM memory B cells, focusing on the clinical impact of their depletion, by comparing the COVID-19-related splenic dysfunction with other hypo- and asplenic conditions and by adding recent data on follow-up studies and postulate a mechanistic explanation for their reduced numbers. The early detection of an impaired IgM memory B cell response in patients with COVID-19 may contribute to their improved care through different strategies, such as through tailored vaccine strategies, prompt hospital admission and/or administration of anti-infective treatments, thus resulting in an better prognosis, although at present management algorithms are still unavailable. Moreover, further studies with longer follow-up are needed to assess the evolution of COVID-19-associated/exacerbated immune deficit.


Subject(s)
COVID-19 , Humans , Immunoglobulin M , Immunologic Memory , Memory B Cells , Spleen
13.
Front Immunol ; 13: 1056272, 2022.
Article in English | MEDLINE | ID: covidwho-2198899

ABSTRACT

Introduction: The Middle East respiratory syndrome coronavirus (MERS-CoV) and the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are two highly contagious coronaviruses causing MERS and COVID-19, respectively, without an effective antiviral drug and a long-lasting vaccine. Approaches for diagnosis, therapeutics, prevention, etc., particularly for SARS-CoV-2 that is continually spreading and evolving, are urgently needed. Our previous study discovered that >60% of sera from convalescent COVID-19 individuals, but <8% from general population, showed binding activity against the MERS-CoV spike protein, indicating that SARS-CoV-2 infection boosted antibodies cross-reactive with MERS-CoV. Methods: To generate antibodies specific to both SARS-CoV-2 and MERS-CoV, here we screened 60 COVID-19 convalescent sera against MERS-CoV spike extracellular domain and S1 and S2 subunits. We constructed and characterized monoclonal antibodies (mAbs) from COVID-19 convalescent memory B cells and examined their binding and neutralizing activities against human coronaviruses. Results and Discussion: Of 60 convalescent serum samples, 34 showed binding activity against MERS-CoV S2, with endpoint titers positively correlated with the titers to SARS-CoV-2 S2. By sorting single memory B cells from COVID-19 convalescents, we constructed 38 mAbs and found that 11 mAbs showed binding activity with MERS-CoV S2, of which 9 mAbs showed potent cross-reactivity with all or a proportion of spike proteins of alphacoronaviruses (229E and NL63) and betacoronaviruses (SARS-CoV-1, SARS-CoV-2, OC43, and HKU1). Moreover, 5 mAbs also showed weak neutralization efficiency against MERS-CoV spike pseudovirus. Epitope analysis revealed that 3 and 8 mAbs bound to linear and conformational epitopes in MERS-CoV S2, respectively. In summary, we have constructed a panel of antibodies with broad-spectrum reactivity against all seven human coronaviruses, thus facilitating the development of diagnosis methods and vaccine design for multiple coronaviruses.


Subject(s)
COVID-19 , Coronaviridae , Middle East Respiratory Syndrome Coronavirus , Humans , SARS-CoV-2 , Antibodies, Monoclonal , Memory B Cells , Antibodies, Viral , COVID-19 Serotherapy , Epitopes
14.
Front Immunol ; 13: 1052374, 2022.
Article in English | MEDLINE | ID: covidwho-2198893

ABSTRACT

The longevity of immune responses induced by different degrees of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection provides information important to understanding protection against coronavirus disease 2019 (COVID-19). Here, we report the persistence of SARS-CoV-2 spike receptor-binding domain (RBD) specific antibodies and memory B cells recognizing this antigen in sequential samples from patients in Bangladesh with asymptomatic, mild, moderate and severe COVID-19 out to six months following infection. Since the development of long-lived memory B cells, as well as antibody production, is likely to be dependent on T helper (Th) cells, we also investigated the phenotypic changes of Th cells in COVID-19 patients over time following infection. Our results show that patients with moderate to severe COVID-19 mounted significant levels of IgG antibodies out to six months following infection, while patients with asymptomatic or mild disease had significant levels of IgG antibodies out to 3 months following infection, but these then fell more rapidly at 6 months than in patients with higher disease severity. Patients from all severity groups developed circulating memory B cells (MBCs) specific to SARS-CoV-2 spike RBD by 3 months following infection, and these persisted until the last timepoint measured at 6 months. A T helper cell response with an effector memory phenotype was observed following infection in all symptomatic patients, while patients with asymptomatic infection had no significant increases in effector Th1, Th2 and Th17 effector memory cell responses. Our results suggest that the strength and magnitude of antibody and memory B cells induced following SARS-CoV-2 infection depend on the severity of the disease. Polarization of the Th cell response, with an increase in Th effector memory cells, occurs in symptomatic patients by day 7 following infection, with increases seen in Th1, Th2, Th17 and follicular helper T cell subsets.


Subject(s)
COVID-19 , Humans , Bangladesh/epidemiology , Memory B Cells , SARS-CoV-2 , Immunoglobulin G , Antibodies, Viral , Patient Acuity , Th17 Cells
15.
Front Immunol ; 13: 1033770, 2022.
Article in English | MEDLINE | ID: covidwho-2198880

ABSTRACT

Background: Although SARS-CoV-2 vaccines have proven effective in eliciting a protective immune response in healthy individuals, their ability to induce a durable immune response in immunocompromised individuals remains poorly understood. Primary antibody deficiency (PAD) syndromes are among the most common primary immunodeficiency disorders in adults and are characterized by hypogammaglobulinemia and impaired ability to mount robust antibody responses following infection or vaccination. Methods: Here, we present an analysis of both the B and T cell response in a prospective cohort of 30 individuals with PAD up to 150 days following initial COVID-19 vaccination and 150 days post mRNA booster vaccination. Results: After the primary vaccination series, many of the individuals with PAD syndromes mounted SARS-CoV-2 specific memory B and CD4+ T cell responses that overall were comparable to healthy individuals. Nonetheless, individuals with PAD syndromes had reduced IgG1+ and CD11c+ memory B cell responses following the primary vaccination series, with the defect in IgG1 class-switching rescued following mRNA booster doses. Boosting also elicited an increase in the SARS-CoV-2-specific B and T cell response and the development of Omicron-specific memory B cells in COVID-19-naïve PAD patients. Individuals that lacked detectable B cell responses following primary vaccination did not benefit from booster vaccination. Conclusion: Together, these data indicate that SARS-CoV-2 vaccines elicit memory B and T cells in most PAD patients and highlights the importance of booster vaccination in immunodeficient individuals.


Subject(s)
COVID-19 , Primary Immunodeficiency Diseases , Adult , Humans , Immunoglobulin G , Memory B Cells , COVID-19 Vaccines , SARS-CoV-2 , Prospective Studies , COVID-19/prevention & control , RNA, Messenger , Vaccination
16.
J Exp Med ; 220(2)2023 02 06.
Article in English | MEDLINE | ID: covidwho-2160842

ABSTRACT

In contrast to a second dose of the SARS-CoV-2 mRNA vaccine, a third dose elicits potent neutralizing activity against the Omicron variant. To address the underlying mechanism for this differential antibody response, we examined spike receptor-binding domain (RBD)-specific memory B cells in vaccinated individuals. Frequency of Omicron-reactive memory B cells increased ∼9 mo after the second vaccine dose. These memory B cells show an altered distribution of epitopes from pre-second memory B cells, presumably due to an antibody feedback mechanism. This hypothesis was tested using mouse models, showing that an addition or a depletion of RBD-induced serum antibodies results in a concomitant increase or decrease, respectively, of Omicron-reactive germinal center (GC) and memory B cells. Our data suggest that pre-generated antibodies modulate the selection of GC and subsequent memory B cells after the second vaccine dose, accumulating more Omicron-reactive memory B cells over time, which contributes to the generation of Omicron-neutralizing antibodies elicited by the third vaccine dose.


Subject(s)
COVID-19 Vaccines , COVID-19 , Animals , Mice , Humans , Feedback , Memory B Cells , SARS-CoV-2 , COVID-19/prevention & control , RNA, Messenger , Antibodies, Neutralizing , Antibodies, Viral
17.
Int J Mol Sci ; 23(23)2022 Nov 30.
Article in English | MEDLINE | ID: covidwho-2143232

ABSTRACT

At present, there is a lack of clinical evidence about the impact and long-term durability of the immune response induced by the third dose of mRNA vaccines. In this study, we followed up the B cell compartment behavior in a cohort of immunocompetent individuals three and six months after the third dose of vaccine. During this period, some subjects contracted the virus. In uninfected vaccinated subjects, we did not report any changes in serum spike-specific IgG levels, with a significant reduction in IgA. Instead, subjects recovered from natural infection showed a significant increase in both specific IgG and IgA. Moreover, we showed a time-related decrease in IgG neutralizing potential to all SARS-CoV-2 variants of concern (VOC) in uninfected compared to recovered subjects, who displayed an increased neutralizing ability, particularly against the omicron variant. Finally, we underlined the presence of a pool of SARS-CoV-2-specific B cells in both groups that are prone to respond to restimulation, as demonstrated by their ability to differentiate into plasma cells and to produce anti-SARS-CoV-2-specific immunoglobulins. These data lead us to assert the long-term effectiveness of the BNT162b2 vaccine in contrasting the severe form of the pathology and prevent COVID-19-associated hospitalization.


Subject(s)
COVID-19 , Memory B Cells , Humans , SARS-CoV-2 , BNT162 Vaccine , COVID-19/prevention & control , RNA, Messenger/genetics , Immunoglobulin G , Antibodies, Viral
18.
Cells ; 11(22)2022 Nov 18.
Article in English | MEDLINE | ID: covidwho-2116255

ABSTRACT

The scope of immune monitoring is to define the existence, magnitude, and quality of immune mechanisms operational in a host. In clinical trials and praxis, the assessment of humoral immunity is commonly confined to measurements of serum antibody reactivity without accounting for the memory B cell potential. Relying on fundamentally different mechanisms, however, passive immunity conveyed by pre-existing antibodies needs to be distinguished from active B cell memory. Here, we tested whether, in healthy human individuals, the antibody titers to SARS-CoV-2, seasonal influenza, or Epstein-Barr virus antigens correlated with the frequency of recirculating memory B cells reactive with the respective antigens. Weak correlations were found. The data suggest that the assessment of humoral immunity by measurement of antibody levels does not reflect on memory B cell frequencies and thus an individual's potential to engage in an anamnestic antibody response against the same or an antigenically related virus. Direct monitoring of the antigen-reactive memory B cell compartment is both required and feasible towards that goal.


Subject(s)
COVID-19 , Epstein-Barr Virus Infections , Influenza, Human , Humans , SARS-CoV-2 , Herpesvirus 4, Human , Antibodies, Viral , Memory B Cells , Seasons
19.
STAR Protoc ; 3(4): 101902, 2022 12 16.
Article in English | MEDLINE | ID: covidwho-2120452

ABSTRACT

Memory B cells (MBCs), part of the immune response elicited by infection or vaccination, can persist in lymphoid organs and peripheral blood and are capable of rapid reactivation upon secondary antigen exposure. Here, we describe a flow cytometric assay to identify antigen-specific MBCs from peripheral blood mononuclear cells and characterize their isotypes and activation status. We detail steps to use fluorescently labeled antigen probes derived from the SARS-CoV-2 spike protein. These can be adapted to detect MBCs against other antigens. For complete details on the use and execution of this protocol, please refer to Weskamm et al. (2022).1.


Subject(s)
COVID-19 , Spike Glycoprotein, Coronavirus , Humans , Leukocytes, Mononuclear , Memory B Cells , SARS-CoV-2
20.
Science ; 378(6622): eabo2523, 2022 11 25.
Article in English | MEDLINE | ID: covidwho-2088384

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has highlighted the need for vaccines that not only prevent disease but also prevent transmission. Parenteral vaccines induce robust systemic immunity but poor immunity at the respiratory mucosa. We developed a vaccine strategy that we call "prime and spike," which leverages existing immunity generated by primary vaccination (prime) to elicit mucosal immune memory within the respiratory tract by using unadjuvanted intranasal spike boosters (spike). We show that prime and spike induces robust resident memory B and T cell responses, induces immunoglobulin A at the respiratory mucosa, boosts systemic immunity, and completely protects mice with partial immunity from lethal SARS-CoV-2 infection. Using divergent spike proteins, prime and spike enables the induction of cross-reactive immunity against sarbecoviruses.


Subject(s)
COVID-19 Vaccines , COVID-19 , Immunity, Mucosal , Immunologic Memory , Memory B Cells , Memory T Cells , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Animals , Mice , Administration, Intranasal , Antibodies, Viral , COVID-19/prevention & control , COVID-19/transmission , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Vaccination/methods , COVID-19 Vaccines/administration & dosage , COVID-19 Vaccines/immunology , Immunoglobulin A , Memory B Cells/immunology , Memory T Cells/immunology
SELECTION OF CITATIONS
SEARCH DETAIL